Effective temperatures and the breakdown of the Stokes-Einstein relation for particle suspensions.
نویسندگان
چکیده
The short- and long-time breakdown of the classical Stokes-Einstein relation for colloidal suspensions at arbitrary volume fractions is explained here by examining the role that confinement and attractive interactions play in the intra- and inter-cage dynamics executed by the colloidal particles. We show that the measured short-time diffusion coefficient is larger than the one predicted by the classical Stokes-Einstein relation due to a non-equilibrated energy transfer between kinetic and configuration degrees of freedom. This transfer can be incorporated in an effective kinetic temperature that is higher than the temperature of the heat bath. We propose a Generalized Stokes-Einstein relation (GSER) in which the effective temperature replaces the temperature of the heat bath. This relation then allows to obtain the diffusion coefficient once the viscosity and the effective temperature are known. On the other hand, the temporary cluster formation induced by confinement and attractive interactions of hydrodynamic nature makes the long-time diffusion coefficient to be smaller than the corresponding one obtained from the classical Stokes-Einstein relation. Then, the use of the GSER allows to obtain an effective temperature that is smaller than the temperature of the heat bath. Additionally, we provide a simple expression based on a differential effective medium theory that allows to calculate the diffusion coefficient at short and long times. Comparison of our results with experiments and simulations for suspensions of hard and porous spheres shows an excellent agreement in all cases.
منابع مشابه
Glassy Relaxation and Breakdown of the Stokes-Einstein Rela- tion in the Two Dimensional Lattice Coulomb Gas of Fractional Charges
– We present Monte Carlo simulation results on the equilibrium relaxation of the two dimensional lattice Coulomb gas with fractional charges, which exhibits a close analogy to the primary relaxation of fragile supercooled liquids. Single particle and collective relaxation dynamics show that the Stokes-Einstein relation is violated at low temperatures, which can be characterized by a fractional ...
متن کاملObservation of fractional Stokes-Einstein behavior in the simplest hydrogen-bonded liquid.
Quasielastic neutron scattering has been used to investigate the single-particle dynamics of hydrogen fluoride across its entire liquid range at ambient pressure. For T>230 K, translational diffusion obeys the celebrated Stokes-Einstein relation, in agreement with nuclear magnetic resonance studies. At lower temperatures, we find significant deviations from the above behavior in the form of a p...
متن کاملSmall atom diffusion and breakdown of the Stokes–Einstein relation in the supercooled liquid state of the Zr46.7Ti8.3Cu7.5Ni10Be27.5 alloy
Be diffusivity data in the bulk metallic glass forming alloy Zr46.7Ti8.3Cu7.5Ni10Be27.5 are reported for temperatures between 530 and 710 K, extending 85 K into the supercooled liquid state of the alloy. At the glass transition temperature Tg, a change in temperature dependence of the data is observed, and above Tg the diffusivity increases more quickly with temperature than below. The data in ...
متن کاملHeterogeneous diffusion, viscosity, and the Stokes-Einstein relation in binary liquids.
We investigate the origin of the breakdown of the Stokes-Einstein relation (SER) between diffusivity and viscosity in undercooled melts. A binary Lennard-Jones system, as a model for a metallic melt, is studied by molecular dynamics. A weak breakdown at high temperatures can be understood from the collectivization of motion, seen in the isotope effect. The strong breakdown at lower temperatures...
متن کاملTest of the Stokes-Einstein relation in a two-dimensional Yukawa liquid.
The Stokes-Einstein relation, relating the diffusion and viscosity coefficients D and eta, is tested in two dimensions. An equilibrium molecular-dynamics simulation was used with a Yukawa pair potential. Regimes are identified where motion is diffusive and D is meaningful. The Stokes-Einstein relation, Deta proportional k(B)T, was found to be violated near the disordering transition; under thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 143 10 شماره
صفحات -
تاریخ انتشار 2015